\(^a\,log\,b + ^a\,log\,c\)
|
Belajar mandiri, pintar sendiri! |
©yippiy Corp. |
Logaritma
\(^a\,log\,(b\,c)\)
\(^a\,log\,b + ^a\,log\,c\)
\(^a\,log\,b - ^a\,log\,c\)
\(\frac{n}{m}\,^a\,log\,b\)
\(\frac{1}{^b\,log\,a}\)
\(^a\,log\,c\)
\(b\)
\(^a\,log\,(\frac{b}{c})\)
\(^a\,log\,b + ^a\,log\,c\)
\(^a\,log\,b - ^a\,log\,c\)
\(\frac{n}{m}\,^a\,log\,b\)
\(\frac{1}{^b\,log\,a}\)
\(^a\,log\,c\)
\(b\)
\(^{a^m}\,log\,b^n\)
\(^a\,log\,b - ^a\,log\,c\)
\(\frac{n}{m}\,^a\,log\,b\)
\(\frac{1}{^b\,log\,a}\)
\(^a\,log\,c\)
\(b\)
\(b^{log\,a}\)
\(^a\,log\,b\)
\(^a\,log\,b + ^a\,log\,c\)
\(^a\,log\,b - ^a\,log\,c\)
\(\frac{n}{m}\,^a\,log\,b\)
\(\frac{1}{^b\,log\,a}\)
\(^a\,log\,c\)
\(b\)
\(^a\,log\,b\:.\,^b\,log\,c\)
\(\frac{n}{m}\,^a\,log\,b\)
\(\frac{1}{^b\,log\,a}\)
\(^a\,log\,c\)
\(b\)
\(b^{log\,a}\)
\(^{a^c}\,log\,{b^c}\)
\(a^{^a\,log\,b}\)
\(\frac{n}{m}\,^a\,log\,b\)
\(\frac{1}{^b\,log\,a}\)
\(^a\,log\,c\)
\(b\)
\(b^{log\,a}\)
\(^{a^c}\,log\,{b^c}\)
\(a^{log\,b}\)
\(\frac{1}{^b\,log\,a}\)
\(^a\,log\,c\)
\(b\)
\(b^{log\,a}\)
\(^{a^c}\,log\,{b^c}\)
\(1\)
\(^a\,log\,b\)
\(\frac{n}{m}\,^a\,log\,b\)
\(^a\,log\,c\)
\(b\)
\(b^{log\,a}\)
\(^{a^c}\,log\,{b^c}\)
\(1\)
\(^a\,log\,a\)
\(^a\,log\,c\)
\(b\)
\(b^{log\,a}\)
\(^{a^c}\,log\,{b^c}\)
\(1\)
\(0\)
\(^a\,log\,1\)
\(b\)
\(b^{log\,a}\)
\(^{a^c}\,log\,{b^c}\)
\(1\)
\(0\)
\(\frac{^c\,log\,b}{^c\,log\,a}\)
\(^a\,log\,b\)
\(^a\,log\,c\)
\(b\)
\(b^{log\,a}\)
\(1\)
\(0\)
\(\frac{^c\,log\,b}{^c\,log\,a}\)